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VECtor: A Versatile Event-Centric Benchmark
for Multi-Sensor SLAM
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Abstract—Event cameras have recently gained in popularity
as they hold strong potential to complement regular cameras
in situations of high dynamics or challenging illumination. An
important problem that may benefit from the addition of an event
camera is given by Simultaneous Localization And Mapping
(SLAM). However, in order to ensure progress on event-inclusive
multi-sensor SLAM, novel benchmark sequences are needed.
Our contribution is the first complete set of benchmark datasets
captured with a multi-sensor setup containing an event-based
stereo camera, a regular stereo camera, multiple depth sensors,
and an inertial measurement unit. The setup is fully hardware-
synchronized and underwent accurate extrinsic calibration. All
sequences come with ground truth data captured by highly
accurate external reference devices such as a motion capture
system. Individual sequences include both small and large-scale
environments, and cover the specific challenges targeted by
dynamic vision sensors.

Index Terms—Data Sets for SLAM, Data Sets for Robotic
Vision, Data Sets for Robot Learning, Sensor Fusion.

MULTIMEDIA MATERIAL

The dataset, along with the documentation and the toolbox,
can be found at https://star-datasets.github.io/vector/

I. INTRODUCTION

S IMULTANEOUS Localization And Mapping (SLAM) is
regarded as an essential problem to be solved by intelli-

gent mobile agents such as autonomous robots, XR devices,
and smart vehicles. LiDARs or depth cameras provide direct
depth readings, and are therefore often considered very helpful
in reducing the complexity and increasing the accuracy and
density of a SLAM solution. However, a compact form factor,
low energy consumption, and the ability to sense appearance
information have since ever made regular cameras an indis-
pensable addition to any SLAM sensor suite. The present letter
targets the addition of yet another exteroceptive visual sensor:
a Dynamic Vision Sensor (DVS), also called an event camera.
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Fig. 1. We present a comprehensive set of data sequences which is recorded
by a rich sensor setup placed on a versatile 3D-printed holder. It is centered
around an event-based stereo camera, and further contains a regular stereo
camera, an RGB-D sensor in the center, a LiDAR mounted on the top, and
an IMU at the rear. The holder can be mounted on various platforms, such
as a helmet as shown on the left (front view), or on a tripod as shown on the
right (side view).

Event cameras have become popular since a little over a
decade now. On an event camera, each pixel measures changes
of the logarithmic brightness. It fires a time-stamped event
as soon as the said measure changes by a certain threshold
amount with respect to a reference value, and the latter is
reset each time an event is fired. As a result, the measurements
returned by an event camera consist of an asynchronous stream
of time-stamped and localized events indicating discretized
changes of the image intensity. Owing to high temporal
resolution and sensitivity, the stream of events tends to be
rather dense in time, while their elevated likelihood of being
triggered along moving intensity edges makes their distribution
in the image plane semi-dense. For further details on the
internal operation principle of event cameras, the reader is
kindly referred to prior art [1], [2].

The addition of dynamic vision to a SLAM sensor suite
is considered interesting from a number of perspectives. First,
the high temporal resolution and absence of exposure intervals
mean that event cameras have the ability to sense highly
dynamic intensity changes as for example caused by the
aggressive motion of a racing drone [3]. Second, again owing
to the absence of exposure times, event cameras have High
Dynamic Range (HDR) and are able to sense events in low or
challenging illumination conditions, as for example caused by
the simultaneous observation of both bright and dark segments.
Third, the fact that the measurements are event-based enables
event-driven processing, a paradigm that promises efficient
perception with actively triggered calculations whenever an
actual change in the observed brightness patterns occurs.

https://star-datasets.github.io/vector/
https://mpl.sist.shanghaitech.edu.cn
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Fig. 2. An overview on four selected data sequences. From top to bottom: mountain-normal, sofa-fast, corridors-walk, units-dolly. From left to right: a photo
of the scene shot by mobile phone or a laser-based reconstruction of the whole environment, accumulated events for left camera (33ms), accumulated events
for right camera (33ms), left visual frame, right visual frame, depth frame or LiDAR frame.

Lastly, event cameras can be integrated with regular cameras
on one and the same chip, and thus hold the potential to
preserve the beneficial form and energy factors of passive
visual sensing. The potential of adding event cameras to the
set of exteroceptive sensors used in SLAM has already been
demonstrated in recent works [4].

Research and development of SLAM solutions require
benchmark sequences that provide a set of standardized
tests with a clean, well-calibrated hardware setup, and—
most importantly—exact ground truth information. Popular
examples are given by the TUM-RGBD [5], KITTI [6],
and EuRoC [7] datasets. While simulated datasets [8]–[10]
certainly represent an interesting source of data, simulators are
always based on models that approximate the real principles
of image formation and often ignore sources of noise or
certain aspects of physics and real-world camera operation.
The development of multi-modal SLAM solutions that process
depth, images, and events therefore asks for novel benchmark
sequences captured by a real sensor setup that includes all
modalities. Owing to the event cameras’ ability to sense
in difficult illumination and highly dynamic scenarios, the
benchmark should necessarily include such challenges besides
the regular small and large-scale application scenarios.

We present novel SLAM benchmark datasets which are the
first to simultaneously satisfy the following requirements:

• Captured by a full hardware-synchronized sensor suite
that includes an event stereo camera, a regular stereo
camera, an RGB-D sensor, a LiDAR, and an IMU;

• Covering the full spectrum of motion dynamics, en-
vironment complexities (e.g. basement with ambiguous

geometries, unfurnished units lacking texture), and illumi-
nation conditions (e.g. HDR scenes, low or dynamically-
changing illumination situations);

• Complete six degrees of freedom ground truth signals for
both small and large-scale scenarios, and highly-accurate
intrinsic and extrinsic calibration.

Note that all datasets and tools for evaluation and calibration
are made publicly available, and all data sequences have been
applied to a series of popular SLAM algorithms for validation
purposes.

II. RELATED WORK
A number of benchmarks containing events in conjunction

with other sensing modalities have been released in recent
years. Table I lists all datasets with key features such as sensor
setups, a spectrum of motion dynamics, the nature of the
ground truth signals, and the level of sensor synchronization.
The first cross-modal dataset is proposed by Weikersdorfer
et al. [11] in 2014, providing both event (128× 128, events
only) and RGB-D streams with relatively low resolution.
Data sequences feature an office environment set up in a
Motion Capture (MoCap) arena. In 2016, Barranco et al. [12]
presented a series of indoor data sequences captured by an
Inilabs DAVIS240B sensor (240×180, event and APS frames,
six-axis built-in IMU) along with a Microsoft Kinect RGB-D
sensor. The whole setup is mounted on top of a pan-tilt unit
and further attached to a mobile robot, hence the motion is
constrained to five Degrees of Freedom (DoF). Approximate
ground truth is generated by a drift-affected integration of
odometry readings.
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TABLE I
COMPARISON OF DIFFERENT EVENT-CENTRIC DATASETS

Dataset Event Event Regular RGB-D LiDAR IMU Motion Ground Truth Poses Sync.Resolution Stereo Stereo Sensor

D-eDVS [11] 128×128 ✖ ✖ ✔ ✖ ✖ Hand-held MoCap ✖
evbench [12] 240×180 ✖ ✖ ✔ ✖ 6 Mobile Robot Odometer ✖
MVSEC [13] 346×260 ✔ ✔ ✖ 16 6/9 Diverse MoCap + Cartographer ✔
UZH-FPV [3] 346×260 ✖ ✔ ✖ ✖ 6 Drone Total Station w/ spline ✔

ViViD [14] 240×180 ✖ ✖ ✔ 16 9 Hand-held MoCap + LOAM ✔
ViViD++ [15] 640×480 ✖ ✖ ✖ 64 9 Driving LOAM w/ GPS ✔

DSEC [16] 640×480 ✔ ✔ ✖ 16 ✖ Driving RTK GPS ✔
AGRI-EBV [17] 240×180 ✖ ✔ ✔ 16 6 Mobile Robot LiDAR SLAM ✔
TUM-VIE [18] 1280×720 ✔ ✔ ✖ ✖ 6 Diverse MoCap (partial) ✔

Ours 640×480 ✔ ✔ ✔ 128 9 Diverse MoCap + ICP ✔

MVSEC [13] is considered as the first modern cross-modal
dataset given its rich sensor setup of a pair of DAVIS m346B
sensors (346 × 260, events and APS frames, six-axis built-
in IMU, about 10cm baseline), a VI-Sensor that includes a
stereo camera (about 10cm baseline) and an in-built nine-
axis IMU, and a 16-channel LiDAR. The provided sequences
can be categorized by motion type as they are recorded by a
hexacopter, a hand-held device, a driving car, and on a motor-
cycle. Ground truth as well as depth maps in the event frames
are generated by running Cartographer [19] and LOAM [20]
respectively. The first two categories come with ground truth
readings from a MoCap system. However, malfunctions oc-
cur during the indoor flying sequences where the VI-Sensor
data is not available. Furthermore, sensors are only partially
synchronized, and temporal post-alignment is conducted. The
UZH-FPV [3] datasets specialize in drone racing and contain a
series of aggressive flight trajectories. A single miniDAVIS346
(346 × 260, events and APS frames, six-axis built-in IMU)
with a wide-angle lens and a stereo camera with fisheye lenses
are mounted on the drone. Three DoF ground truth is collected
with a total station by measuring the position of an onboard
reflective prism. However, this setup constrains the drone to
constantly remain in the line-of-sight of the total station and
fly in a large, open area. Additionally, partial tracking failures
during high-acceleration maneuvers are reported, and sensors
are only partially synchronized. ViViD [14] and ViViD++ [15]
are dataset projects with handheld and driving sensor setups.
The handheld sequences are recorded by a single DAVIS240C
(346 × 260, events and color APS frames, six-axis built-in
IMU), an RGB camera, a thermal camera, an RGB-D sensor,
and a 16-channel LiDAR. The driving sequences first remove
the RGB-D sensor due to its unreliable depth readings on the
outside, then exchange the event sensor and the 16-channel
LiDAR for a DVXplorer (640×480, events only, six-axis built-
in IMU) and a 64-channel LiDAR. The hand-held sequences
are captured in a MoCap arena, while the outdoor sequences
contain ground truth by fusing LOAM and GPS.

Further datasets have been introduced since 2021. Simi-
lar to the MVSEC sequences, DSEC [16] uses two stereo
cameras but omits the LiDAR and the IMU. Zujevs et al.
propose agricultural robotics-oriented datasets [17] that are
recorded by a mobile robot in different types of agricultural

environments during autumn season. Sensors include a single
DVS240 (240 × 180, events only, six-axis built-in IMU), a
stereo camera, an RGB-D sensor, and a 16-channel LiDAR.
All sensors are hardware-synchronized, except for the RGB-D
sensor. Due to technical reasons, GPS is not included in the
data, and ground truth is approximated by three different
LiDAR SLAM algorithms. Finally, the TUM-VIE [18] dataset
is captured by a pair of Prophesee Gen4 CD event cameras
(1280×720, events only), a stereo camera, and a six-axis IMU.
The sequences are recorded in differently scaled environments
and under different motion conditions (e.g. walking, running,
skating, and biking). Ground truth poses are provided by a
MoCap system.

An increasing number of recent works rely on public
datasets to evaluate algorithm performance. Our contribution
is the first to simultaneously provide a complete sensor setup
including two stereo cameras, bi-modal depth data, full syn-
chronization, accurate extrinsic calibration, and reliable, drift-
free ground truth signals. We therefore believe that our work
provides strong value to the sensor fusion research community.

III. HARDWARE SETUP

Our sensor setup consists of a multi-camera setup equipped
with a LiDAR on top and a nine-axis IMU at the rear. All sen-
sors are rigidly mounted on a 3D-printed holder, as depicted
in Fig. 1. This section introduces the individual sensors and
all details about their synchronization and calibration.

A. Sensor Setup

The event stereo cameras have VGA resolution (640×480)
with a horizontal baseline of about 17cm. Since the MoCap
system emits 850nm infrared strobes to locate the passive
spherical markers, we have adopted the common practice of
putting an infrared filter (PHTODE IR690, cutoff frequency
of 400-690nm) in front of the lenses [18], [21], thus blocking
most of the flashing and reducing the background noise in the
event stream. The reason for choosing a pair of event cameras
with VGA (640×480) rather than HD resolution (1280×720)
is due to the fact that we have observed a smearing effect
on top of the surface of active events. Similar problems are
reported by Hu et al. [10] and Alzugaray and Chli [22], who
make reference to motion blur in the event stream or timestamp
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TABLE II
HARDWARE SPECIFICATIONS

Sensor Rate Specifications

2× Prophesee Gen3 CD 640×480 pixels
with Kowa LM5JCM N/A f/2.8-16, FoV: 67◦H / 82◦V

baseline: 17cm down to 0.08lux, > 120dB

2× FLIR Grasshopper3 1224×1024 pixels (binned)
with Kowa LM6JC 30Hz f/1.4-16, FoV: 61◦H / 82◦V

baseline: 17cm monochrome with global shutter

640×576 pixels, up to 3.86m
Azure Kinect 30Hz Narrow FoI: 75◦H / 65◦V

only depth camera is in use

128×2048 points, up to 50m
Ouster OS0-128 10Hz FoV: 360◦H / 90◦V

±1.5-5cm range precision

3-axis gyroscope
XSens MTi-30 AHRS 200Hz 3-axis accelerometer

3-axis magnetometer

OptiTrack MoCap 120Hz 6 DoF ground truth

FARO Laser Scanner N/A accurate pointcloud scanning

delays owing to sudden and significant contrast changes on
DAVIS event cameras. From an engineering perspective, the
higher the number of events the more likely such artefacts
occur. Besides camera dynamics, the resolution of the sensor
is an obvious parameter deciding over the number of events.

The regular stereo cameras have global shutters and are
positioned just under the event cameras with a vertical baseline
of about 3.5cm. Owing to insufficient bandwidth, we have con-
figured a 2×2 binning of pixels thus resulting in 1224×1024
monochrome frames. An additional RGB-D sensor is mounted
in the middle and set up with unbinned narrow-field-of-view
depth mode. The central mounting ensures that the overlap
between the different cameras is maximized. Given the fact
that the color camera on the sensor uses a rolling shutter
mechanism, only the depth stream is recorded. We further-
more provide an easy-to-use function that uses the carefully-
calibrated extrinsics to reproject the depth readings into other
sensor frames.

A 128-channel panoramic LiDAR with a vertical opening
angle of 90◦ and an azimuthal sampling density of 2048
beams per turn (the largest resolution commercially available)
is placed on top of the setup. It is raised by four copper pillars
to make sure the bottom beams are not blocked by the holder
or any other sensors. Note that the RGB-D sensor and the
LiDAR are unlikely to be used at the same time. The former
is used in small-scale scenarios, while the latter operates best
in large-scale scenarios.

All data sequences are recorded on a PC running Ubuntu
18.04 LTS on an Intel Core i9-10900F Processor. The com-
puter is equipped with a GeForce GTX 1070 GPU, 32GB
RAM, and a 1TB SSD. The details of each sensor are
summarized in Table II.

Fig. 3. Illustration of the time synchronization implementation. An MCU
produces different types of square wave signals. The different signals are
marked with different colors, the period is indicated below the signal, and the
pulse width above. The vertical lines on the left and right (purple) indicate the
temporal location of the start and ending signals communicated to the MCU.
Note that only one signal is indicated for each stereo pair.

B. Time Synchronization

As illustrated in Fig. 3, all sensors including the MoCap
system are synchronized at the hardware level and triggered
by a micro-controller unit (MCU). We use an STM32F407
and rely on the onboard external oscillator as a main clock to
produce the trigger signals.

To suit the needs of the different types of sensors, the
MCU outputs a variety of signals that adhere to the differ-
ent synchronization interface specifications. After the MCU
receives a start trigger from the user, it forwards a sequence
of 200 pulses to the right event camera (master). This signal
is used to calibrate the internal clock of the event camera in
5ms intervals, and synchronization within the pair is achieved
via the internal firmware and a daisy chain connection. The
same signal is also forwarded to the IMU. For the regular
cameras, the MCU transmits a 30Hz signal with a 10ms pulse
width to control the exposure intervals’ beginning and end.
The RGB-D sensor also receives a 30Hz signal but with a
1ms pulse width as required. The LiDAR’s internal clock is
synchronized with the MCU’s through a mimicked analog GPS
NMEA time signal, and individual scan capture is triggered
by an additional 1Hz signal. The MoCap system receives a
constant 120Hz signal from the MCU irrespectively of whether
or not data recording is in progress. An independent high
gate signal is used to mark the start and the end of an entire
sequence. When the MCU receives an end trigger from the
user, all aforementioned signals except for the constant MoCap
signal and the GPS NMEA signal are terminated. The RGB-D
sensor and the MoCap system both operate within the 800-
900nm infrared band, which may cause cross-talk between the
sensors. Fortunately, the infrared camera’s exposure time is in
the order of microseconds, and we insert a ghost camera in
the MoCap interval scheduler to represent the RGB-D depth
channel’s actual exposure time interval.

We record all data streams into ROS bag files. Given that the
hardware setup can achieve sub-microsecond synchronization
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Fig. 4. Illustration of required calibration variables. Nodes: sensor type (yel-
low/void background color indicates need/no need for intrinsic calibration).
Blue edges: joint camera extrinsic calibration. Cyan edges: Camera-IMU
extrinsic calibration. Orange edges: Camera-MoCap hand-eye calibration. Red
edges: Camera-LiDAR extrinsic calibration. The variables are calibrated in the
listed order.

accuracy, we use the order of each sensor’s data packages to
reconstruct the timeline, and cut off blank messages before
and after the start and end trigger times.

C. Calibration

The whole sensor suite along with the MoCap reference
frame requires intrinsic and extrinsic calibration. An illustra-
tion of all calibration variables and their order of calibration
is shown in Fig. 4. All data sequences used for calibration and
the related software as well as the calibration results can be
found on our website. For further reference, we also provide
CAD measurements of all inter-sensor extrinsic parameters.

1) Intrinsics: All camera intrinsics, including the focal
lengths ( fx, fy), the optical center (cx, cy), and the distortion
parameters (k1, k2, p1, p2), are calibrated using the official
ROS camera calibration toolbox1 and by gently moving in
front of a 9×6 checkerboard visualized on a computer screen.
The choice of a virtual checkerboard enables display in either
static or blinking mode. The latter is particularly useful for
event camera calibration, as it produces accumulated event
images with a sharp appearance of the checkerboard. Images
that contain too much blur have been manually removed. Note
that we take the factory calibration result for the RGB-D
sensor (intrinsics of both color and depth camera as well as
extrinsics between them). The IMU intrinsics (i.e. the statis-
tical properties of the accelerometer and gyroscope signals,
including bias random walk and noise densities) are calibrated
using the Allan Variance ROS toolbox2 with a 5-hour-long
IMU sequence by putting the sensor flat on the ground with
no perturbation. The MoCap system is pre-calibrated before
data recording.

2) Joint camera extrinsic calibration: In order to determine
the extrinsics of the multi-camera system, we point the sensor
setup towards the screen and record both static and blinking
checkerboard patterns with known size. For each observation,
the relative position between screen and sensors is kept still
by putting the sensor suite steadily on a tripod. The board
is maintained within the field of view of all cameras. Note

1http://wiki.ros.org/camera calibration
2https://github.com/ori-drs/allan variance ros

that here we use the color camera on the RGB-D sensor
to jointly calibrate its extrinsics. The extrinsics of the depth
camera are obtained by the known internal parameters of the
depth camera, and the rolling shutter effect is safely ignored
as no motion between cameras and pattern is involved. The
extrinsics are calculated by detecting corner points on the
checkerboard pattern and applying PnP to the resulting 2D-
3D correspondences. The result is refined by Ceres Solver3-
based reprojection error minimization. We finally validate the
estimated extrinsic parameters by analyzing the quality of
depth map reprojections and by comparing the result against
the measurements from the CAD model.

3) Camera-IMU extrinsic calibration: Extrinsic transfor-
mation parameters between the IMU and the regular stereo
camera are identified using the Kalibr toolbox [23], [24]. The
visual-inertial system is directed towards a static 6×6 April-
grid board, and the board is constantly maintained within the
field of view of both regular cameras. All six axes of the IMU
are properly excited, and the calibration is conducted under
good illumination conditions to further reduce the unwanted
side-effects of motion blur. Given prior intrinsics of the regular
stereo camera and the IMU and extrinsics between the regular
cameras, we limit the calculation to the extrinsics between the
IMU and the regular stereo camera, only.

4) Camera-MoCap hand-eye calibration: The MoCap sys-
tem outputs position measurements of the geometric centers
of all markers expressed in a MoCap-specific reference frame.
In order to compare recovered trajectories against ground
truth, we therefore need to identify a euclidean transformation
between the MoCap frame of reference and any other sensor
frame. We follow the hand-eye calibration paradigm presented
in [25]. A static 7×6 checkerboard is maintained within the
field of view of both gently-moving cameras, and MoCap pose
measurements are simultaneously recorded. Relative poses
from both the MoCap system and the cameras are then used
to solve the hand-eye calibration problem using the official
OpenCV calibrateHandEye API.4

5) Camera-LiDAR extrinsic calibration: Our extrinsic cal-
ibration between the LiDAR and the cameras bypasses via a
high-quality colored point cloud captured by a FARO laser
scanner. The point cloud is captured in an unfurnished room
with simple geometric structure and in which we only place a
checkerboard. In order to perform the extrinsic calibration, we
then record LiDAR scans and corresponding camera images
by moving the sensor setup in this room. The cameras are
constantly directed at the checkerboard. Next, we estimate the
transformation between the FARO and the LiDAR coordinate
frames by point cloud registration. Owing to the fact that the
FARO scan is very dense and colored, we can furthermore
hand-pick 3D points corresponding to checkerboard corners
in the real world. By furthermore detecting those points in
the camera images, we can again run the PnP method to
obtain FARO to camera transformations. To conclude, the
extrinsic parameters between LiDAR and cameras are retrieved
by concatenating the above two transformations.

3http://ceres-solver.org/
4https://docs.opencv.org/4.2.0/d9/d0c/group calib3d.html

http://wiki.ros.org/camera_calibration
https://github.com/ori-drs/allan_variance_ros
http://ceres-solver.org/
https://docs.opencv.org/4.2.0/d9/d0c/group__calib3d.html
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TABLE III
BIAS SETTINGS FOR THE EVENT CAMERAS

bias param. well-lit low-light sunlight

diff 299 299 299
diff off 221 200 221
diff on 384 420 384

fo 1598 1530 1550
hpf 1437 1530 1448
pr 1250 1250 1250

refr 1500 1500 1500

IV. DATASET OVERVIEW

All sensors are mounted on a versatile 3D-printed holder
which is resistant to deformations and can be mounted on vari-
ous platforms: (1) a simple handle for hand-held sequences, (2)
a wheeled tripod, and (3) a helmet. Overall, the datasets can
be divided into two categories: small-scale and large-scale.
The small-scale data sequences are recorded inside the MoCap
arena, which has a volume of 5m×5m×3m. On small-scale
sequences, all sensors are recorded except for the panoramic
LiDAR. Large-scale data sequences are recorded by exerting
longer trajectories through larger-scale indoor architectures.
All sensors except for the RGB-D sensor are recorded. We
again use the FARO laser scanner to generate high-quality
point clouds of the environment, and align LiDAR scans to
this point cloud in order to generate ground truth information.
Each sequence is provided in the form of a set of individual,
single-topic ROS bags, and the ground truth signal is provided
as a separate file. All bags can be downloaded from our
website, and the user may select a subset for each sequence
depending on the sensor setup. We provide an additional, easy-
to-use dataset toolbox to execute functions such as calibration,
event visualization, bag merging, data validation, and depth
reprojection. Sensor measurements and scene setups for a
selection of four sequences is presented in Fig. 2.

In order to control the number of events and ensure a clean
observation of the texture and the structure of the environment,
and the sensitivity of the event camera (i.e. the biases5) is
carefully tuned. Table III summarizes our settings. For small-
scale data sequences captured in a constantly well-lit environ-
ment (about 300lux, high SNR), we chose a conservative set
of bias parameters (i.e. well-lit) and the smallest aperture in
order to maximize the suppression of background noise and
reduce the overall number of generated events. As a result,
the captured event stream is generally more distinctive. In
extremely low light situations (around 1lux, low SNR), the
aperture is adjusted to the largest setting, and a different set
of bias parameters is chosen to increase the event camera’s
responsiveness to brightness changes (i.e. low-light). For large-
scale data sequences, we adopt one of two sets of bias
parameters (well-lit or sunlight), and the choice highly depends
on how much natural light is present in the scene.

TABLE IV
OVERVIEW OF SMALL-SCALE DATA SEQUENCES

Seq. Name Time[s] MER[106events/s] Description

board-slow 35 0.86 Planar Motion
corner-slow 41 0.67 Spherical Motion

robot-normal 40 0.54 6 DoF
robot-fast 31 3.02 6 DoF

desk-normal 91 1.07 6 DoF
desk-fast 46 7.14 6 DoF

sofa-normal 91 2.02 6 DoF
sofa-fast 40 4.18 6 DoF

mountain-normal 61 4.62 6 DoF
mountain-fast 43 13.09 6 DoF
hdr-normal 60 2.28 6 DoF, low light

hdr-fast 41 10.37 6 DoF, low light

A. Small-scale sequences

All small-scale data sequences are summarized in Table IV.
The name of each sequence indicates the observed scene, and
the postfix indicates the motion speed. MER represents the
mean event rate of the left event camera, omitting the first
and last 5s of recording. All sequences are recorded within
the boundaries of the MoCap arena, and contain multiple
closed loops on each trajectory. The length of each sequence
is indicated in seconds. The first two sequences are well-
suited for debugging purposes. board-slow contains three DoF
planar motion, pointing at a flat, texture-rich paperboard and
a 3D geometric object. corner-slow contains a three DoF
spherical motion by rotating the ballhead of the tripod. The
setup faces a closet with checkerboard texture and further
box-shaped objects positioned in a nearby corner. The setup
is purposely built to contain large segments with different,
continuous depths. All remaining data sequences contain full
six DoF motion. The robot sequences show a simple scene
with a humanoid robot placed on a white table. The desk
sequences mimic a messy working environment with multiple
books, on-and-off screens, keyboards, headphones, and other
accessories and decorations placed on an L-shaped table with
a chair placed in front of it. The sofa sequences show a
typical living room environment with a large sofa surrounded
by multiple chairs and a coffee table. Some extra items are
distributed on the furniture to enrich the texture. The mountain
sets are composed of several calibration targets, thus resulting
in feature-rich but self-similar texture. Each board is placed in
a random position causing occlusions in the data. To conclude,
the hdr sequences are captured in low light conditions. The
setup is similar to the mountain sequences, except that the
camera directly faces into a light source.

B. Large-scale sequences

The large-scale data sequences are recorded in various
indoor environments with long trajectories, as summarized in
Table V. Owing to different platforms, the sequences capture
three different types of motion. The platforms are indicated
by the postfix of each name: (1) a dolly, thus resulting in

5https://docs.prophesee.ai/stable/hw/manuals/biases.html

https://docs.prophesee.ai/stable/hw/manuals/biases.html
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TABLE V
OVERVIEW OF LARGE-SCALE DATA SEQUENCES

Seq. Name Length[m] MER[106events/s] Description

corridors-dolly 80 0.58 One Loop
corridors-walk 80 0.85 One Loop

units-dolly 244 1.01 Loops
units-scooter 241 1.83 Loops
school-dolly 119 1.61 One-way

school-scooter 111 2.80 One-way

three DoF planar motion; (2) a helmet, thus resulting in jerky,
full six DoF walking trajectories; and (3) a helmet worn by
a scootering person, thus resulting in smooth, full six DoF
high-speed motion. The corridor sequences are recorded in
the basement of ShanghaiTech University’s teaching center,
and consist of four corridors connected in a loopy Q-shape.
The environment contains scarce texture and approximately
constant, well-lit illumination without the influx of natural
sunlight. The units sequences are recorded during nighttime,
and present various sub-scenes reaching from an empty school
to a cluttered room and a long, straight hallway. The sensors
are deliberately moved in and out of units to form multiple
closed loops. The school sequences are captured along non-
loopy trajectories on a single floor of a school building. school
is recorded in well-furnished environments with lots of texture.
corridor and units use the well-lit set of bias parameters, while
school is recorded during daytime with incoming sunlight,
and thus again present HDR conditions. We therefore use the
sunlight bias on those sequences.

V. EVALUATION

1) Ground Truth: For small-scale data sequences, ground
truth is given by applying the hand-eye calibration result to
the MoCap readings. The latter have sub-millimeter accuracy,
a frequency of 120Hz, and six DoF. For large-scale data
sequences, we follow the approach proposed by Ramezani
et al. [26] and use the Iterative Closest Point (ICP) method
to match the motion-compensated LiDAR scans with a pre-
scanned dense point cloud of the environment captured by
the survey-grade FARO laser scanner, thus resulting in a six
DoF ground truth trajectory for the LiDAR frame. We use
CloudCompare6, a robust and efficient open-source software
to register the LiDAR scans with the high-resolution prior
global map. The procedure merely requires an initial guess
for the first scan in each sequence, which we set manually.
The initial guess of each subsequent scan is then simply set
to the optimized pose of the previous scan, thus leading to the
complete ground truth trajectory.

2) Evaluation metrics: To validate and evaluate the perfor-
mance of different algorithms, the provided scripts calculate
Relative Pose Errors (RPE) and Absolute Trajectory Errors
(ATE) as defined in the original work of Sturm et al. [5]. These
measures express local tracking accuracy and global drift
and consistency, respectively. We use the opensource software

6https://www.danielgm.net/cc/

EVO7 to perform the calculation and comparison. Note that
before we compare the ground truth trajectory against the
trajectory generated by an algorithm, we express the ground
truth results into the respective sensor’s frame using our setup’s
extrinsic parameters. Given that SLAM algorithms express
poses with respect to an arbitrary initial starting frame, we
furthermore use the first N poses of each trajectory to align
the results with ground truth.

3) Validation on state-of-the-art algorithms: We validated
our data sequences by applying ORB-SLAM3 [27] with reg-
ular stereo setting, ORB-SLAM3 with RGB-D setting, VINS-
mono [28] with monocular-inertial setting, VINS-fusion with
stereo-inertial setting, and LIO-SAM [29] with LiDAR-inertial
setting. As shown in Table VI and Fig. 5, the results obtained
by the above frameworks are in line with their expected
performance, which validates our dataset preparations and
suggests high practical usefulness. The current level of existing
event-based SLAM methods, as documented on our website,
confirms the relevance of the presently-proposed development
and benchmark kit, which further demonstrates the open
challenges and needs for novel event-based algorithms.

VI. CONCLUSIONS

In conclusion, we are proposing novel benchmark datasets
for research on multi-sensor SLAM extending the commonly
used sensor set by dynamic vision sensors. The datasets are
fully synchronized and accurately calibrated, and we expect
them to be of high value to the community. Each dataset has
been recorded multiple times with slightly different trajec-
tories. Our current work consists of implementing an open
SLAM benchmark webpage that accepts public algorithm
submissions. It will use the unpublished, secret sequences to
perform a fully automatic, fair evaluation and ranking of any
submitted algorithm.
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